5,448 research outputs found

    Ferromagnetic Transition in One-Dimensional Itinerant Electron Systems

    Full text link
    We use bosonization to derive the effective field theory that properly describes ferromagnetic transition in one-dimensional itinerant electron systems. The resultant theory is shown to have dynamical exponent z=2 at tree leve and upper critical dimension d_c=2. Thus one dimension is below the upper critical dimension of the theory, and the critical behavior of the transition is controlled by an interacting fixed point, which we study via epsilon expansion. Comparisons will be made with the Hertz-Millis theory, which describes the ferromagnetic transition in higher dimensions.Comment: 4 pages. Presentation improved. Final version as appeared in PR

    Zeeman and Orbital Effects of an in-Plane Magnetic Field in Cuprate Superconductors

    Full text link
    We discuss the effects of a magnetic field applied parallel to the Cu-O (abab) plane of the high TcT_c cuprate superconductors. After briefly reviewing the Zeeman effect of the field, we study the orbital effects, using the Lawrence-Doniach model for layered superconductors as a guide to the physics. We argue that the orbital effect is qualitatively different for in-plane and inter-layer mechanisms for superconductivity. In the case of in-plane mechanisms, interlayer couplings may be modeled as a weak interlayer Josephson coupling, whose effects disappear as H→∞H\to\infty; in this case Zeeman dominates the effect of the field. In contrast, in the inter-layer mechanism the Josephson coupling {\em is} the driving force of superconductivity, and we argue that the in-plane field suppresses superconductivity and provides an upper bound for Hc2H_{c2} which we estimate very crudely.Comment: 4 pages with 1 embedded ps figure. Manuscript submitted to the MMM'99 conferenc

    Disorder induced brittle to quasi-brittle transition in fiber bundles

    Get PDF
    We investigate the fracture process of a bundle of fibers with random Young modulus and a constant breaking strength. For two component systems we show that the strength of the mixture is always lower than the strength of the individual components. For continuously distributed Young modulus the tail of the distribution proved to play a decisive role since fibers break in the decreasing order of their stiffness. Using power law distributed stiffness values we demonstrate that the system exhibits a disorder induced brittle to quasi-brittle transition which occurs analogously to continuous phase transitions. Based on computer simulations we determine the critical exponents of the transition and construct the phase diagram of the system.Comment: 6 pages, 6 figure
    • …
    corecore